On constructing snakes in powers of complete graphs

نویسنده

  • Jerzy Wojciechowski
چکیده

We prove the conjecture of Abbott and Katchalski that for every m ≥ 2 there is a positive constant λm such that S(K d mn) ≥ λmnS(K m ) where S(K m) is the length of the longest snake (cycle without chords) in the cartesian product K m of d copies of the complete graph Km. As a corollary, we conclude that for any finite set P of primes there is a constant c = c(P ) > 0 such that S(K n) ≥ cnd−1 for any n divisible by an element of P and any d ≥ 1. Supported by the WVU Senate Research Grant #R-93-033

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further Results on Vertex Covering of Powers of Complete Graphs

A snake in a graph G is defined to be a closed path in G without proper chords. Let Kd n be the product of d copies of the complete graph Kn. Wojciechowski [13] proved that for any d ≥ 2 the hypercube Kd 2 can be vertex covered with at most 16 disjoint snakes. Alsardary [6] proved that for any odd integer n ≥ 3,d ≥ 2 the graph Kd n can be vertex covered with 2n 3 snakes. We show that for any ev...

متن کامل

Snakes and Caterpillars in Graceful Graphs

Graceful labelings use a prominent place among difference vertex labelings. In this work we present new families of graceful graphs all of them obtained applying a general substitution result. This substitution is applied here to replace some paths with some trees with a more complex structures. Two caterpillars with the same size are said to be textit{analogous} if thelarger stable sets, in bo...

متن کامل

On the Length of Snakes in Powers of Complete Graphs

We prove the conjecture stated in [10] that there is a constant λ (independent from both n and k) such that S(K n) ≥ λnd−1 holds for every n ≥ 2 and d ≥ 2, where S(K n) is the length of the longest snake (cycle without chords) in the Cartesian product K n of d copies of the complete graph Kn.

متن کامل

The upper domatic number of powers of graphs

Let $A$ and $B$ be two disjoint subsets of the vertex set $V$ of a graph $G$. The set $A$ is said to dominate $B$, denoted by $A rightarrow B$, if for every vertex $u in B$ there exists a vertex $v in A$ such that $uv in E(G)$. For any graph $G$, a partition $pi = {V_1,$ $V_2,$ $ldots,$ $V_p}$ of the vertex set $V$ is an textit{upper domatic partition} if $V_i rightarrow V_j$ or $V_j rightarrow...

متن کامل

Constructing vertex decomposable graphs

‎Recently‎, ‎some techniques such as adding whiskers and attaching graphs to vertices of a given graph‎, ‎have been proposed for constructing a new vertex decomposable graph‎. ‎In this paper‎, ‎we present a new method for constructing vertex decomposable graphs‎. ‎Then we use this construction to generalize the result due to Cook and Nagel‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 181  شماره 

صفحات  -

تاریخ انتشار 1998